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Abstract 

This paper concerns several  r e l a t ed  c lasses  of mappings from 

i n t o  i t s e l f  which represent nonlinear general izat ions of ce r t a in  types 

of matrices,  including the  diagonally dominant and the monotonic matrices,  

as w e l l  as the  M-, P-, and S-matrices and t h e i r  weaker forms. Analogous 

t o  the  l i n e a r  case,  these nonlinear mappings occur frequently as d i sc re t e  

analogs of boundary value problems and i n  network flow problems. 

Rn 

The d i f f e r e n t  function c lasses  have been introduced and analyzed 

i n  recent  work by J. Mor6 and W. Rheinboldt. 

a survey of t h a t  work which covers, i n  pa r t i cu la r ,  the basic  def in i t ions  

of these mappings, t h e i r  p r inc ipa l  proper t ies ,  a s  w e l l  as t h e i r  i n t e r -  

re la t ions .  Then several  r e s u l t s  are proved concerning s u r j e c t i v i t y  pro- 

p e r t i e s  of some of the functions,  thereby generalizing i n  p a r t  various 

This ar t ic le  begins with 

older r e s u l t s .  

problems f o r  network flows i s  discussed, and it i s  shown how some of the  

proper t ies  of the functions under consideration lead t o  statements about 

Dirichlet-type problems f o r  network flows and about a general  maximum 

pr inc ip le .  F ina l ly ,  a class of imp l i c i t  i terat ive processes Fs in t ro-  

duced which represents a general izat ion of the  family of l i nea r  methods 

obtained from regular  s p l i t t i n g s .  For these processes both a monotonic 

and a global  convergence theorem a r e  proved. A s  an appl icat ion,  t h i s  

ensures the  global convergence of the  (underrelaxed) blockdacobi  and 

block-Gauss-Seidel methods f o r  continuous, su r j ec t ive  M-functions, 

which, i n  tu rn ,  general izes  a corresponding theorem of Rheinboldt f o r  

the poin t  processes. 

The r e l a t i o n  between nonlinear mappings and equilibrium 
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1. Introduction 

n Consider a nonlinear mapping F:D c R -+ Rn and the  system of equations 

Fx = z .  Many of the  well-known convergence r e s u l t s  about i t e r a t i v e  pro- 

cesses f o r  solving t h i s  system place only very general  ana ly t ic  conditions 

upon F, such as d i f f e r e n t i a b i l i t y ,  Lipschitz-continuity, etc. This pro- 

vides,  of course, f o r  rather broad theorems which are of ten  generalizable 

t o  infinite-dimensional spaces. But a t  the same time, when applied t o  

pa r t i cu la r  mappings on Rn, such as, f o r  example, d i sc re t e  analogs of 

e l l i p t i c  boundary value problems, or nonlinear network flow functions,  

these general  converge'nce r e s u l t s  tend t o  give only r e l a t ive ly  l imited o r  

local ized information. 

The s i tua t ion  i s  analogous t o  the  one i n  which only a norm condition 

HB([ < 1 i s  used to  ensure the convergence of an i t e r a t i v e  process 

X k+l = Bx k + z ,  k = 0,1, ..., f o r  solving the l i n e a r  system Ax = z. It 

i s  well-known t h a t  stronger convergence r e s u l t s  here require  a much deeper 

knowledge of the spec t r a l  propert ies  of the i t e r a t i o n  matrix B and hence 

of the s t r u c t u r a l  properties of A i t s e l f .  Similarly,  it appears t o  be 

beyond question t h a t  also i n  the nonlinear case stronger convergence 

1) This work w a s  supported i n  p a r t  by the National Science Foundation under 
Grant GJ-231 and the National Aeronautics and Space Adminfstration under 
Grant NGL-21-008-008. 

2 )  Computer Science Center, University of Maryland, College Park, M d .  20742. 
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theorems w i l l  have t o  be based, i n  general, on more spec i f i c  assumptions 

about the  inherent finite-dimensional s t ruc tu re  of t he  mapping F, as, 

f o r  instance,  t he  spec i f i c  dependence of the  components f of F on the  

individual  var iab les  x . This i n  t u r n  leads  t o  the  need f o r  defining and 

analyzing appropriate classes of n-dimensional nonlinear mappings as they 

occur i n  various appl icat ions.  So f a r  only a few s t ruc tu ra l ly  d i f f e r e n t  

c lasses  of such mappings have been considered, and a need f o r  more work 

along t h i s  l i n e  ce r t a in ly  ex i s t s .  

j 

i 

This a r t i c l e  presents a survey--and some new results--on recent work 

about a group of r e l a t e d  classes of n-dimensional functions. Following 

an unpublished suggestion of Ortega, Rheinboldt [1969bl invest igated the  

so-called M-functions on Rn which represent a nonlinear generalization 

of the  well-known M-matrices. In  p a r t i c u l a r ,  it w a s  shown t h a t  the  

d i s c r e t e  analogs of mildly nonlinear e l l i p t i c  problems considered by 

B e r s  [1953], Greenspan and Parter [19651, Ortega and Rheinboldt C19671, 

[1970a] and o thers ,  as w e l l  as t h e  network flow functions analyzed by 

Birkhoff and Kellogg [19661 and Porsching [19691, are spec i f i c  cases of 

M-functions. Moreover, the global convergence of the  (underrelaxed) 

nonlinear (point-) Jacobi-, and (point-) Gauss-Seidel processes w a s  

es tab l i shed  f o r  continuous, su r j ec t ive  M-functions, thereby generalizing the  

corresponding well-known r e s u l t s  f o r  M-matrices (see, e.g., Varga [19623). 

The la t te r  r e s u l t  is  typ ica l  f o r  many surpr i s ing  s i m i l a r i t i e s  between 

the behavior of M-functions and M-matrices, and i n  turn  these similarities 

suggest t h e  idea of looking f o r  analogous nonlinear extensions of o ther  
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types of matrices as w e l l .  

and t h e i r  weaker forms, t h e  Po- and S -matrices considered by Fied ler  and 

Ptak [1962], [1966] are of some i n t e r e s t ,  espec ia l ly  s ince every M-matrix 

i s  a l so  a P-, as w e l l  as an S-matrix. 

introduced and s tudied such nonlinear n-dimensional generalizations of these 

four types of matrices--accordingly named Po, P ,  So, and S-functions. A s  

expected, M-functions are spec ia l  cases of P-functions and the  continuous 

P-functions are S-functions. It a l so  turned out  that  e a r l i e r  r e s u l t s  of 

Gale and Nikaido [1965] and Karamardian [19681 have a na tura l  place i n  t h i s  

theory, and t h a t  c e r t a i n  mappings, considered by Willson [19681 and Sandberg 

and Willson [1969a/b] i n  connection with p a r t i c u l a r  e lec t ronic  c i r c u i t  

problems, a r e  included among these new functions. 

In  t h i s  connection, t he  P- and S-matrices 

0 

Recently, Mor6 and Rheinboldt [19701 

In  Section 2 w e  present t he  bas ic  de f in i t i ons  of the mentioned function- 

c lasses  and of severa l  related types of mappings. 

t i o n  3 by a survey of t h e  major proper t ies  of these functions and of t h e i r  

i n t e r r e l a t ions .  For c l a r i t y  the r e s u l t s  are not always s t a t ed  i n  t h e i r  most 

general form, and f o r  fu r the r  d e t a i l s  about the material i n  t h e  f i r s t  two 

sec t ions ,  as w e l l  as f o r  many of the  proofs ,  reference is  made t o  Rheinboldt 

E1969b1, Mor6 and Rheinboldt C19701, and Mor6 [19701. Section 4 concerns 

the  problem of determining the  s u r j e c t i v i t y  of cer ta in  of the mappings under 

T h i s  is  followed i n  Sec- 

consideration and presents some new generalizations of earlier resu l t s  on 

M-functions. I n  Section 5 connections between n-dimensional nonlinear 

mappings and network flow problems are discussed, and, f i n a l l y  Section 6 

concerns a general type of i t e r a t i v e  process similar t o  the  processes ob- 

tained by regular  s p l i t t i n g s  i n  t h e  l i ned r  case. I n  pa r t i cu la r ,  a global 

convergence theorem is proved which covers as a spec ia l  case t h e  convergence 
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of the block-Jacobi-, and block-Gauss-Seidel process f o r  continuous sur- 

j ec t ive  M-functions. 

A t  t h i s  po in t ,  I would l i k e  t o  extend my spec ia l  thanks t o  Jorge Mor6 

fo r  h i s  he lpfu l  cooperation i n  preparing th i s  ar t ic le  and t o  the Gesellschaft  

fdr  Mathematik und Datenverarbeitung, m.b.H., Birlinghoven/Germany, where, 

i n  1969, I began work on several  of the new r e s u l t s  reported here. 

2. B a s i c  Definit ions 

Throughout this paper, x s y denotes the na tura l  (component-wise) 

Rn of column p a r t i a l  ordering on the n-dimensional real l i n e a r  space 

vectors ,  and x < y stands f o r  x < yi, i E N = {1,2, ..., n}- The correspond- i 
n ing notat ion i s  used on the  space L ( R  ) of real n x n matrices. 

We begin by r eca l l i ng  the following standard terminology: 

n n Definit ion 2.1.  (a)  A mapping F:D C R -f R i s  isotone (or ant i tone)  on 

D i f  x y, x,y E D,  implies t h a t  Fx S Fy (or Fx 3 Fy),  and s t r i c t l y  

isotone (or s t r i c t l y  ant i tone)  i f ,  i n  addition, it follows from x < y,  x ,y  E D ,  

that also Fx < Fy (or Fx > Fy). 

(b) The function F : D  C Rn + Rn i s  inverse isotone on D i f  

Fx Fy, x,y E D ,  implies t h a t  x 5 y. 

Note the  self-evident f a c t  t h a t  an a f f ine  mapping Fx = Ax + b is  isotone 

exactly i f  A >, 0 and inverse isotone i f  and only i f  A i s  nonsingular and 

A 3 0.  -1 

There i s  a c lose  connection between nonlinear network flows and several  

of the function c lasses  t o  be discussed here. In  f a c t ,  many of the r e s u l t s  
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about these functions have inherent  network-theoretical aspects and appear 

t o  be i n t u i t i v e l y  clearer i f  a network terminology i s  used t o  state them. 

Following Rheinboldt [1969bl--and i n  analogy with t h e  connection between 

graphs and t h e i r  incidence matrices--a p a r t i c u l a r  network i s  associated with 

any function on R". 

Definit ion 2 .2 .  

(a) For any f ixed x E R the  n2 functions 

Consider F :D c Rn -f Rn with the  components f 1I - * - tf,. 
n 

are the link-functions of F a t  x. H e r e  e' a r e  the  usual u n i t  

bas i s  vectors i n  Rn. 

Cb) The associated network 52 = { N , A ~ )  of F cons i s t s  of the  set of nodes F 

N = {l, ..., n} and- the  set  of l i nks  

n A = { ( i , j )  E N x N I i + j ,  ' F i j  
not constant f o r  some x E R >.  

n A l i n k  (i, j )  E AF is  permanent i f  $ i s  not constant f o r  any x E R . i j  

This notation can be in te rpre ted  as follows: The var iab les  xl,...,x n 

are state var iab les  associated with the  n nodes of Q and the  value 
F' 

fik1, ..., x ) i s  the  ( t o t a l )  e f f lux  from node i a t  state x. The nodes n 

i and j of N are connected by a l i n k ,  i f  there i s  a t  least  one s t a t e  

x a t  which the  l i n k  function $ij is  not constant; w e  might say t h a t  a t  

s ta te  x the  l i n k  ( i , j )  E AF i s  conducting. A permanent l i n k  i s  then 

conducting a t  any state x. 
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W e  s h a l l  now place various conditions upon t h e  behavior of the l i nk  

functions,  and i n  a l l  cases these conditions w i l l  be assumed permanent, t h a t  

i s  , they a re  t o  

Defini t ion 2.3. 

f o r  any state x 

hold independently of the pa r t i cu la r  state. 

n n 
A mapping F : D  C R -+ R is  off-diagonally ant i tone i f  

E Rn t he  "of f-diagonal" l i n k  functions $ i j l  i f j ,  

i , j  E N ,  are ant i tone.  Similar ly ,  F i s  diagonally ( s t r i c t l y )  isotone 

i f  f o r  any x E Rn the "diagonal" l i nk  functions $ll,...,$ a re  ( s t r i c t l y )  nn 

isotone. 

Off-diagonal an t i t on ic i ty  states t h a t  fo r  any l inked nodes i , j  E N 

a change of the state x of the receiving node produces a change with the  

opposite s ign i n  the e f f lux  f i  from the or ig ina t ing  node i. This is, 

of course, the expected s i t u a t i o n  i n  a l i n e a r  po ten t i a l  network where the  

j 

j '  
flow from i t o  j i s  proportional t o  the po ten t i a l  difference x - x 

The matrix A = (a ) describing such a l i n e a r  network flow then s a t i s f i e s  

a i 0, i f j ,  which i s  one of the proper t ies  of an M-matrix. Since the  

o ther  property,  A 2 0,  is  equivalent with inverse i so ton ic i ty ,  w e  are led  

i 

i j  

i j  
-1 

t o  the following nonlinear general izat ion of M-matrices. 

Definit ion 2.4.  An inverse isotone and off-diagonally an t i tone  mapping 

F:D C R" + R" i s  an M-function. 

It is  now hardly surpr is ing t h a t  an a f f i n e  mapping Fx = Ax + b i s  an 

n M-function i f  and only i f  A E. L ( R  ) is  an M-matrix. 

Ky Fan [19581 has shown t h a t  a l l  pr inc ipa l  minor determinants of an 

M-matrix are necessar i ly  pos i t ive .  The same r e s u l t ,  of course, holds 

f o r  a l l  symmetric, pos i t ive  d e f i n i t e  matrices. More generally,  Fiedler  
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and P t a k  [1962] considered the class of a l l  matrices i n  LCRn) with t h i s  

property and ca l l ed  them P-matrices. 

A d i f f e r e n t  generalization of the M-matrices can be obtained from the  

following character izat ion r e s u l t  of Ky Fan [19581 : A matrix A E L(Rn)  

with a 5 0 ,  i # j ,  i , j  E N ,  i s  an M-matrix i f  and only i f  Au > 0 f o r  

some u > 0. Following earlier work by Stiemke [1915], F ied ler  and P t a k  

[19661 ca l led  any A E LCR 1 an S-matrix i f  Au > 0 f o r  some u > 0. In  the  

i j  

n 

same article they also showed that  any P-matr ix  is an S-matrix and proved 

a number of r e s u l t s  about these and r e l a t ed  matrices. 

Stimulated by these l i n e a r  r e s u l t s ,  as w e l l  as by some nonlinear 

r e s u l t s  of G a l e  and Nikaido [19651, Karamardian [1968J, and Sandberg and 

Willson [196%],Mor6 and Rheinboldt 119701 introduced the following non- 

l i nea r  general izat ions of the P- and S-matrices and of their  weaker forms: 

n Definit ion 2.5. (a) A mapping F:D c R" -f R i s  a P,-function Cor P-function) " 

on D ,  i f  f o r  any x,y E D,  x # y,  there  e x i s t s  a k E N such t h a t  

n (b) F:D C Rn -t R i s  an S -function (or S-function) on 

if fo r  any x E D there  e x i s t s  a y E D such t h a t  y 2 x,  y # x, and Fy 2 Fx 

D ,  -0 

(or  Fy > Fx).  

Again it i s  e a s i l y  verified--using the r e s u l t s  of Fiedler  and Ptak [1962], 

[1966l--that an a f f ine  mapping Fx = Ax + b belongs t o  one of these four 

classes of functions i f  and only i f  A E L(Rn)  is  a member of the corresponding 

c l a s s  of matrices. 
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In  network terminology, P-functions have t h e  property t h a t  f o r  any 

(non-zero) change of t he  s ta te  there  is  a t  least one node a t  which the  

change of t he  e f f l u x  has t h e  same s ign  as the  change of state. 

appl icat ions t h i s  appears t o  be a r a t h e r  na tura l  condition. 

For many 

n I f  A E L(R ) i s  diagonally dominant and has a non-negative diagonal, 

then A 

w e  have 

i s  a P -matrix, s ince ,  i f  x # 0 and k E N such t h a t  Ix,I = 0 

xk(Axlk 2 

I f  A i s  even s t r i c t l y  diagonally dominant, it i s  a P-matrix. This suggests 

the  question whether t he  concept of diagonal dominance can also be extended 

t o  nonlinear functions. Already a simple r e f l ec t ion  shows that severa l  

na tura l  d i r e c t  generaJizations are not e n t i r e l y  sa t i s f ac to ry ;  t h i s  makes 

the  following ingenious de f in i t i on  of Mor6 [1970] r a the r  in te res t ing :  

n Definit ion 2.6.  A mapping F:D C R -t Rn i s  s t r i c t l y  diagonally dominant, 

if f o r  any x,y E D,  x # y,  it follows from f (x) = f Cy) t h a t  k k 

More' [19701 shows that, again, an a f f ine  mapping Fx = Ax + b i s  s t r i c t l y  

diagonally dominant i f  and only i f  A i s  a s t r i c t l y  diagonally dominant 

matrix. H e  a l so  introduces an extension of the concept which includes the  

i r reducib ly  diagonally dominant matrices. This generalization i s  based on 

the existence of ce r t a in  paths i n  the  associated network, 
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3 .  Propert ies  of the Different  Functions 

In  l i n e  with the  survey nature of t h i s  art icle we  summarize now 

without proof some of the  major proper t ies  of the  c lasses  of functions 

introduced i n  the  previous section. For the sake of s implici ty ,  these 

r e s u l t s  are not given i n  t h e i r  most general  form, and, i n  pa r t i cu la r ,  

it i s  always assumed t h a t  F:R + Rn is defined on a l l  of 

more r e s t r i c t e d  domains could a l s o  be admitted. 

n 
Rn, although 

Theorem 3.1 - Relations between the  Classes. 

(a)  Any P- o r  S-function F:R -+ Rn i s  a l s o  a P - o r  S -function, respect ively.  

(b) Any continuous Po o r  P-function F:R + Rn i s  a l s o  an S 

n 
0 0 

n o r  S-function, 0 

respect ively.  

n (c )  Any isotone, o r  an t i tone  mapping F:R + Rn i s  an S -function, and 0 

s t r i c t n e s s  impliek t h a t  F is  an S-function. 

n (d) A continuous, inverse-isotone mapping F:R -+ Rn is an S-function. 

(e) If F:Rn -+ Rn is a P - o r  P-function, then F i s  diagonally isotone,  0 

o r  s t r i c t l y  diagonally isotone,  respect ively.  

( f )  Any continuous, diagonally isotone,  and s t r i c t l y  diagonally dominant 

n mapping F:R + R~ is a P-function. 

(9) F:Rn + Rn i s  an M-function i f  and only i f  it i s  an off-diagonally 

an t i tone  P-function. 

The implications ( a ) ,  . (c ) ,  and (e) a re  r a the r  straightforward con- 

sequences of the def in i t ions ;  Cb) represents  a r e s u l t  of Karamardian [1968] 

phrased i n  t h i s  terminology; (d) and (g) a r e  proved by Mor6 and Rheinboldt 

I19701, while ( f )  i s  a r e s u l t  of Mor6 [19701. 
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W e  ind ica te  the  general  s t ruc tu re  of these re l a t ions  i n  the  follow- 

ing diagram: 

1 

isotone 

P-function 

S -function 0 S-function 
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Note t h a t ,  by de f in i t i on ,  any isotone,  o r  s t r i c t l y  isotone function 

i s  diagonally isotone, o r  s t r i c t l y  diagonally isotone, respectively.  This 

r e l a t ion  i s  not shown. Note a l so  t h a t  the  diagram contains several  derived 

implications,  such a s ,  f o r  example, that any M-function i s  s t r i c t l y  diagon- 

a l l y  isotone. 

Theorem 3.2  - Inverses. 

(a) F:R -f Rn is inverse isotone i f  and only i f  F i s  in j ec t ive  and n 

-1 n n 
F :FR + R is  isotone. 

-1 (b) I f  F:Rn -f Rn is  a P-function, then F i s  inject ive and F :FRn -+ Rn 

i s  again a P-function. 

(c )  I f  F:Rn -f Rn is  an F-different iable ,  i n j ec t ive  P -function, then 0 
-1 n n 

F :FR -+ R is  again a P -function. 0 

The proofs of (a), and (b) a re  straightforward consequences of the 

def in i t ions .  P a r t  (c) i s  proved by Mor6 and Rheinboldt [1970]; it i s  

conjectured that the r e s u l t  remains va l id  if F is  only continuous. 

In  the  case of Po-, P-, o r  M-matrices a l s o  any p r inc ipa l  submatrix 

belongs t o  the same c l a s s .  In  order t o  consider the nonlinear analog of 

t h i s  r e s u l t ,  w e  formalize f i r s t  t he  concept of a subfunction. 

n Defini t ion 3 . 3 .  

t o  the  index set M = { i l ,  ..., i } C  N ,  0 < m < n, and the constants 

c j $ M ,  i s  the  mapping G:R -f R with t h e  components 

The subfunction of the mapping F:R -+ Rn corresponding 

m 
m m 

j '  

where e' are the u n i t  b a s i s  vectors  i n  Rn. 
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W e  s h a l l  see i n  Section 5 t h a t  these subfunctions a re  of pa r t i cu la r  \ 

i n t e r e s t  i n  connection with Dirichlet boundary value problems f o r  network 

flows. 

In  general izat ion of the c i t e d  r e s u l t  f o r  Po-, P-, and M-matrices w e  

have now: 

n Theorem 3 . 4  - Subfunctions. 

a l so  any subfunction of F belongs t o  the same function c lass .  

For any Po-, P-, o r  M-function F:R + Rn, 

In  the  case of P - and P-functions, the  proof follows d i r e c t l y  from 0 

the def in i t ions .  For continuous, su r j ec t ive  M-functions, the  r e s u l t  w a s  

given by Rheinboldt [1969b]. Its general izat ion t o  a rb i t r a ry  M-functions 

is due t o  Mor6 and Rheinboldt [1970]; i n t e re s t ing ly ,  the proof i s  based 

on the  corresponding r e s u l t  f o r  P-functions together with the  r e l a t i o n  Cg) 

of Theorem 3.1 between t h e  two function c lasses .  

In the  appl icat ions,  character izat ion theorems f o r  the functions of 

the various c lasses  a re  of considerable importance. For M-functions 

Rheinboldt [1969b] gave four  r e l a t ed  theorems of t h i s  type,  none of which 

required more than cont inui ty .  In  order  t o  i l l u s t r a t e  the  connection t o  

other  r e s u l t s  given later,  w e  prove here  some modification of one of these 

theorems. As usual ,  a path from i t o  i n  QF i s  a sequence of l i nks  

of the form 

(3.1) 

Theorem 3.5. L e t  F:Rn + Rn be off-diagonally ant i tone,  and assume t h a t  

f o r  any x E R there e x i s t s  a vector u = u(x) > 0 such t h a t  the mapping n 
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i s  isotone. 

path (3.1) t o  a node R = R(i ,x)  E N such t h a t  pz 

and t h a t  a t  any s t a t e  the l i n k  functions Jli 

s t r i c t l y  ant i tone.  Then F is an M-function. 

Suppose fu r the r  t h a t  f o r  any x E Rn and i E N there  is a 

i s  s t r i c t l y  isotone 

, j = 0 ,..., m ,  are 
j j+ l  

Proof: Suppose t h a t  Fx $ Fy. Then, with u = ucy) ,  

and N 

hence suppose t h a t  to > 0. 

Jli j such t h a t  

y . + t u  = x  a n d y  + t u  > x , a n d  

= ( i  E N I tOui = y .  -x. I i s  not empty. I f  to Q 0, then x 6, y ,  

f o r  any j # i 
0 1 1  

I f  i E No, then a l so  j E N 0 

is always s t r i c t l y  ant i tone.  In  f a c t ,  otherwise 

1 O i  i j ,  O j  j 

provides a contradiction. Hence, t he re  e x i s t s  a node i c N such t h a t  

P i  

0 

i s  s t r i c t l y  isotone. But then 

i s  again a contradict ion.  

the r e s u l t  is proved. 

Altogether, therefore ,  to > 0 is  impossible and 
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Note t h a t  when Px is s t r i c t l y  isotone f o r  any x ,  then F i s  

already an M-function s ince we can take R = R(i,x) = i. This generalizes 

the suff ic iency port ion of the earlier c i t ed  character izat ion of M-matrices 

by Ky Fan, namely, t h a t  A i s  an M-matrix i f  and only i f  a 6 0,  i # j ,  

and Au > 0 f o r  some u > 0. The necessi ty  part  is  t r i v i a l ,  s ince w e  can 

take u = A e > 0,  w i t h  e = (l,l, ..., 11 . It might be conjectured t h a t  

i j  

-1 T 

s imilar ly  f o r  M-functions the  conditions of Theorem 3.5 are a l so  necessary. 

This is  not  the case as the following example shows: 

2 2 
( (arctan x 1 - x 2 )  

a rc tan  x 
F:R -+ R , Fx = 

2 

It is  readi ly  ve r i f i ed  that  F is  an M-function, bu t  fo r  no u > 0 is  

F ( tu )  an isotone function of t fo r  a l l  t E R . 1 

The above character izat ion r e s u l t  f o r  M-functions does not even 

require F t o  be continuous. I f  F is assumed t o  be d i f fe ren t iab le ,  

simpler character izat ions can be obtained i n  terns of propert ies  of the  

der ivat ive.  

Theorem 3.6. Let F:Rn + Rn be F-different iable  on a l l  of Rn. 

n (a) F is  a P -function i f  and only i f ,  f o r  any x E R , F '  (x) i s  a 0 

P - m a t r i x .  
0 

n 

n 

(b) I f ,  f o r  any x E R , F ' h )  is  a P-matrix, then F is a P-function. 

(c) I f ,  f o r  any x E R , F' (x) i s  an M-matrix, then F is an M-function. 

(d) I f  F is  an M-function, then F ' ( x )  is  an M-matrix whenever it is  

nonsingular . 
(e) I f ,  f o r  any x E R , F' (x) i s  a s t r i c t l y  diagonally dominant matrix, 

n 

then F i s  a s t r i c t l y  diagonally dominant mapping. 
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Par ts  (a) and Cd) are given by More and Rheinboldt [19701, and (e) \ 

i s  due t o  Mor6 [1970]. It may be noted that  i n  some of these implications 

F-d i f fe ren t iab i l i ty  may be reduced t o  G-different iabi l i ty .  Parts (b) and 

(c) represent  r e s u l t s  of G a l e  and Nikaido [19651 phrased i n  our terminology. 

It  may be noted t h a t  (c) follows from !b) and Theorem 3.1Cg). In  f a c t ,  

n 
since a . f . ( x )  0 f o r  i # j and any x E R , the mean value theoran applied 

to  ensures t h a t  F is off-diagonally ant i tone.  

I =  

A s  a typ ica l  appl icat ion of Theorem 3.6, consider the two-point 

boundary value problem 

(3.2) u" = $ ( t , u , u ' ) ,  0 < t < 1, u(0) = a, U U )  = B 

T 3  1 where $ i s  F-differentiable on S = {t ,u ,p)  E R I 0 6 t 6 1, u,p E R }, 

and 

A simple d i sc re t e  analog of (3.2) has the  form 

n 2 F:Rn+R , F x = A x + h @ x + b  

-1 where h = (n+l) , t j  = jh, j = 0,1, ..., n+l,  

A =  

2 

-1 i 0 , b =  T 
C-a,O,. . . ,O,-B) , 
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n -1 and @:Rn -t R has t h e  components 4iCti,x. , (2h) 

with x = 01, x = B. For h < 2/y it i s  readi ly  v e r i f i e d  t h a t  

F '  (x) = A + h Q' (x) i s  always an M-matrix. In f a c t ,  F'  (x) is  t r id iagonal  

(xi+l-xi-l) ) , i=l,. . ,n ,  
1 

0 n+l 
2 

with pos i t i ve  diagonal and s t r i c t l y  negative first subdiagonals, and we 

have i r reducib le  diagonal dominance. (See, e.g., Varga [1962].) Thus, 

F is  an M-function. It turns  ou t  t h a t  F is  a l s o  sur jec t ive ;  t h i s  can be 

shown i n  various ways; a simple proof follows from Theorem 4.7. 

n Since a l i n e a r  mapping A:R -t Rn i s  inverse isotone i f  and only i f  

-1 n n 
A 4 0 ,  Theorem 3.6 suggests the conjecture t h a t  when F:R -t R has,  f o r  

any x E R , a nonsingular F-derivative f o r  which F' (XI-' 2 0,  then 
n 

F 

is  inverse isotone. So f a r ,  t h i s  s t i l l  represents  an open problem, but  

there  are several  p a r t i a l  answers. W e  conclude t h i s  sec t ion  with one of 

these; a second one is  contained i n  the next sect ion.  

Theorem 3.7. L e t  F:Rn -+ Rn be convex and G-differentiable on Rn. Then 

F 

and F'  (x) 4 0. 

i s  inverse isotone i f  and only i f ,  f o r  any x E Rn, F '  (x) i s  nonsingular 

-1 

The proof i s  given by Mor6 [19701. 

4. Su r j ec t iv i ty  

Ur W.s sec t ion  w e  t u rn  t o  the question when ce r t a in  of the functions 

considered so f a r  are su r j ec t ive ,  t h a t  i s ,  when the corresponding equation 

n Fx = z is solvable f o r  any z E R . The basic  too l  f o r  our discussion w i l l  

be the following "norm-coerciveness" theorem which appears t o  be due t o  

Cacciopoli [1932] and which i s  also a spec ia l  case of a more general 

r e s u l t  of Rheinboldt C1969aJ . 
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n n Theorem 4.1. L e t  F:R -f R be a l o c a l  homeomorphism. Then F i s  b i j e c t i v e  \ 

i f  and only i f  F i s  norm-coercive i n  the sense t h a t  

(4.1)  

In  addi t ion,  w e  s h a l l  frequently use the  well-known domain invariance 

n theorem which ensures t h a t  a continuous, i n j ec t ive  mapping F:R 

open range FRn and is a homeomorphism from Rn onto FRn. 

-+ Rn has an 

A s  a d i r e c t  appl icat ion of Theorem 4.1, w e  prove the following general- 

i za t ion  of a r e s u l t  of Sandberg and Willson [1969al. Following Ortega and 

Rheinboldt [1970b], a mapping @:R 
n 

-+ Rn i s  diagonal i f  the i t h  component 

of @ is a function of only the ith var iab le  x,, o r ,  i n  o ther  words, 'i 1 

if the l ink-set  A of the  associated network of @ is empty. @ 

Theorem 4.2.  L e t  F:Rn -+ Rn be a continuous P -function such t h a t ,  indepen- 0 

dent of x, the  off-diagonal l ink-functions are Lipschitz continuous; t h a t  i s  

s , t  E R ,  1 x E R  n , i #  j .  (4 .2 )  I f .  1 (x+se j )-fi(x+te j ) I  Q yi j  Is-tl , 

Then = F + @ is  a su r j ec t ive  P-function f o r  any diagonal, s t r i c t l y  isotone, 

and su r j ec t ive  mapping @:R -+ Rn, O i ,  i = 1 ,..., n. n 

Proof: From the  de f in i t i ons  it follows readi ly  t h a t  F i s  a P-function and, 

hence, i n j ec t ive  . Moreover, each component of 0 i s  necessar i ly  continuous 

on R1 and thus a l so  F i s  continuous. In  order t o  apply Theorem 4.1,  it 

remains t o  show only t h a t  F  ̂ is  norm-coercive. For t h i s  w e  proceed by 

induction with respec t  t o  the dimension n. 

h 
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For n = 1, F is  isotone and the statement is  t r i v i a l .  A s s u m e  there- \ 

k fore  t h a t  t he  theorem i s  va l id  f o r  dimension n - 1, and t h a t  {x 1 c Rn is  

~k any sequence such t h a t  {Fx 1 i s  bounded. 

there  e x i s t s  f o r  any k a 0 an index i E N such t h a t  

By t h e  de f in i t i on  of P -functions, 0 

k 

k k k 
i i  x ( f .  (x Mi ( 0 ) )  2 0 ,  xi # 0 ,  

k k k k  

and hence t h a t  

k k 

k 1 1  1 k k  

k k W e  can select a subsequence of {x 1 -- again denoted by { x  1 -- such t h a t  

i 

(4.3) assumes the  form 

i s  constant ,  and, f o r  ease of notat ion,  t h a t  ik = n f o r  a l l  k 3 0. Then k 

n k  A k  Since {Fx 1 i s  bounded, and, say, Ifn(x )-fn(0) I 6 c,  k 2 0 ,  it follows 

(c ) ,  while f o r  xk < 0 we  f o r  xk 2 0 t h a t  9 COZ 6 4,(xn) d c or 0 6 xn 6 on k k -1 
n n n 

obtain $n(0) 2 4,(xn) k 2 -c, and thus 0 3 x k 3 4, -1 (-c). Altogether, therefore ,  

{x } i s  bounded. 

n 
k 
n 

n-1 n-1 h 
Now consider t he  subfunction G:R -f R of F with the  components 

i = 1, ..., n-1. 

Ir 
By Theorem 3.4, G s a t i s f i e s  again the conditions o f  the  theorem, and it 
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k ~k follows from the boundedness of {xn) and {Fx 1 that 

k k 
lei(xl,. . . ,x n-1 ,O) I 

k Therefore, by induction hypothesis, {xi), i = 1, ..., n-1, must be bounded 
sequences, and this implies that F is indeed norm-coercive. 

CI 

Note that the condition (4.2) certainly holds if F itself is uni- 

formly Lipschitz-continuous. Thus the theorem applies, in particular, to 

the case F = A + @, where A is a P -matrix. This represents exactly 0 
A 

the mentioned result of Sandberg and Willson [1969al. At the same time, 

the one-dimensional example Fx = e + x shows that (4.2) does not require 

F to be uniformly Lipschitzian. 

X 

In the case of inverse isotone, or M-functions, the rather stringent 

norm-coercivity assumption (4.1) can be replaced by the following condition 

of order-coercivity: 

l im llxkl = +a 

and either xk d xk+' or x k k+l 2 x 
for all k 3 0. 

(4.4) lim 11 = +m whenever 
k- tm 

For M-functions this was proved by Rheinboldt [1969b]. For the proof of the 

corresponding more general result on inverse isotone mappings the next 

simple observation will be useful: 
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n 
Lemma 4.3. A continuous, inverse isotone mapping F :R -+ R~ is  su r j ec t ive  

\ 

i f  and only i f  

(4.5) {y E R" I y = z + tv ,  -00 < t < +m) c F R ~  

n f o r  some v > 0 and z E R . 

Proof: 

suff ic iency,  observe f i r s t  t h a t  F is a homeomorphism between Rn and 

FRn and hence, by Theorem 4.1, t h a t  FRn = R i f  F is norm-coercive. 

L e t  {x 1 C Rn be any sequence such t h a t  {Fx 1 i s  bounded. 

of v > 0,  we  can choose constants a,B such t h a t  av 6 Fxk - z 6 Bv f o r  

a l l  k 2 0, and hence, by (4.51, t h a t  

The necessi ty  of t he  condition is  t r i v i a l .  For the proof of the  

n 

k k Then, because 

k Fa = z + av 6 Fx C z + Bv = Fb, k = O , l , .  .. 
n f o r  c e r t a i n  a,b E R . *  Therefore, it follows from the  inverse i so ton ic i ty  

of F t h a t  a s xk 6 b f o r  a l l  k ,  which means t h a t  F is  indeed norm- 

coercive. 

The mentioned order-coercivity r e s u l t  has now the form: 

n Theorem 4.4. 

i f  and only i f  it is order-coercive; t h a t  is ,  i f  and only i f  (4.4) holds. 

A continuous, inverse isotone mapping F :R -t Rn is  su r j ec t ive  

Proof: If F is su r j ec t ive ,  then Theorem 4 .1  ensures that F is  norm- 

coercive and hence order-coercive. 

0 n Conversely, l e t  F be order-coercive and, w i t h  any f ixed z = Fx e FR 

and a > 0 ,  

e = (1,1, ..., 1) . Since F is  a homeomorphism between Rn and FRn, 

w e  then have 

set qttt:  [ O , l J  -f Rn, qCt1 = z + t ae ,  0 6 t 6 1, where 

T 
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A n 
t = SUP { t  E [o , i ]  I z + sae  E FR , s E [ o , ~ I }  > 0, 

A 
and p (t) = F-lqCt) is  well-defined f o r  t E: [O,tl.  

l e t  { tk}  C R 

Then z c q ( t k )  6 q(tk+l) 6 z + t a e ,  k = O , l , . . . ,  and, by the  inverse 

i so ton ic i ty  of 

Suppose t h a t  3 < 1 and 

h A \ = t. 1 be such t h a t  0 6 5 < \+l < t, k = O , l , . . . ,  and l i m  
kjm 

A 

F ,  p ( t k )  6 P ( \ + ~ ) ,  k = O , l , .  .. . But then the order-coerci- 

A v i t y  implies t h a t  { p ( t k ) )  must be bounded, and, therefore ,  t h a t  l i m  p ( t k )  = x 
k-too _ _  

n ex i s t s .  Now, by cont inui ty ,  FG = q($)  and, s ince FRn is  open, t is  

A clearly not maximal against  assumption. Thus, necessar i ly ,  t = 1 and, 

because a > 0 w a s  a r b i t r a r y ,  z + t e  E FRn f o r  a l l  t 2 0. Similar ly  it 

follows t h a t  z + t e  E FRn f o r  a l l  t 6 0 and now the  r e s u l t  is a d i r e c t  

consequence of Lemma 4 . 3 .  

A t  the  end of the previous sec t ion  w e  mentioned the conjecture that 

-1 n when F:Rn -f Rn is F-different iable  and F '  (x) 3 0 f o r  any x E R , then 

F is  inverse isotone. A p a r t i a l  answer t o  t h i s  question w a s  given by 

Theorem 3.7. 

can be obtained with the help of a proof technique similar t o  that of t he  

previous theorem. 

In  the  case of su r j ec t ive  mappings another p a r t i a l  r e s u l t  

n Theorem 4.5. 

t h a t ,  f o r  any x E R , F ' (x )  is  nonsingular and s a t i s f i e s  F'.(xZ a 0. 

Suppose that  F:Rn -f R is continuously F-d i f fe ren t iab le  and 

n -1 

Then F is  inverse isotone and su r j ec t ive  i f  and only i f  it is order- 

coercive. 

Proof: 

t h a t  F i s  order-coercive. By the inverse-function theorem F i s  a l o c a l  

homeomorphism. there e x i s t  open neigh- 

borhoods U of xo and V of Fxo such t h a t  the r e s t r i c t i o n  Fu of F 

The necessi ty  p a r t  w a s  proved i n  Theorem 4.4. Suppose therefore  

n More spec i f i ca l ly ,  f o r  any xo E R 
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\ 

-1 
U 

t o  U is  a homeomorphism from U onto V and t h a t  the inverse G = F :V -+ U 

i s  again continuously F-different iable  with G'(y) = F'(Gy) 2 0 €or any y E V. 
-1 

But then, f o r  any y S z ,  y ,z  E V I  it €allows from 

t h a t  G is  isotone on V I  and hence, by Theorem 3.2, t h a t  Fu is inverse 

isotone on U.  

borhood U of xo i n  which F i s  inverse isotone. 

In  other  words, for  any xo E Rn there  e x i s t s  an open neigh- 

0 0 
L e t  now y = Fx , u 2 0 ,  u # 0,  be any vectors ,  and set  q:[O,lI -+ Rnf 

q ( t )  = y + t u ,  0 S t S 1. By the  l o c a l  homeomorphism property, there i s  a 0 

t > 0 and a continuous function p: [O,t I -t R1 such that p COl = xol and 1 1 

F p ( t )  = q ( t ) ,  t E [O,tl l .  

p beyond tl t o  some t > tl, e t c .  This continuation process ensures the  
. 2  

existence of a continuous p:[O,f)  -+ R1 such t h a t  p(01 = x , and FpCtZ = qCtZ 

f o r  t E [ O , t ) .  

If tl < 1, w e  can repeat  this argument and continue 

0 

L e t  t̂ E (0,lI be the maximal value up t o  which p can be 

A extended. For any r Is  E [ O , t ) ,  r < s I  t he  set p ( [ r , s l l  is  compact and hence 

can be covered by f i n i t e l y  many open sets U ..., U i n  each of vhich F i s  

inverse isotone. More spec i f i ca l ly ,  w e  can s e l e c t  po in ts  

r = r < r < ... < r 

i = l , . . . , m .  Then q(ri+l) 2 q ( r . 1  and t h e  inverse i s o t o n i c i t y  of F i n  

each U 

1' m 

= s ,  such t h a t  { p ( t )  I ri 6 t 6 r 1 c Ui, 1 2 n+l i+l 

1 

imply t h a t  p(ri+l)  3 p(r i ) ,  i = l , . . . , m ,  and hence that i 

< ^t, 1 Suppose now t h a t  ^t < 1 and l e t  15) c R be such t h a t  0 6 tk < tk+l 

h 
1, k = 0 , l f . . . ,  k+l  

k = Otli...I and l i m  t = t. By (4.6) w e  have p ( \ )  6 p ( t  k k+m 
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0 A 
and hence y 6 q ( t k )  Q yo + t u ,  k 2 0,  together  

implies t h a t  { p ( t  ) )  i s  bounded and, therefore ,  

Because of t he  cont inui ty  of F ,  we  now have Fx 

FRn cont rad ic t s  t he  maximality of t. 

k 
* 

Ir 

n With t h i s  we  have shown t h a t  yo + u E FR 

with the  order-coercivity, \ 

t h a t  l i m  p ( t k )  = x ex i s t s .  

= q ( t )  and the openness of 

/r 

k- 

f o r  any yo E FRn and 

n u 2 0, u # 0. 

whenever yo E FRn and v 2 0,  v # 0. 

i n  the form y = yo + u - v, where yo E FRn and u 2 0, v 2 0, w e  see t h a t  

y E FRn and hence t h a t  FRn = Rn. 

and hence a homeomorphism from Rn onto i t se l f .  Thus, i f  Fy 2 Fx, then 

e i t h e r  y = x o r  u = Fy - Fx 2 0 ,  u # 0. With p ( t )  = F &+tu ) ,  0 s t 6 1, 

the argument leading t o  (4.6) shows t h a t  y = pC1) 3 p(0) = x,  and, hence, 

t h a t  F i s  inverse isotone. 

By the  same argument it follows that a l so  yo - v E FR 

n Since any poin t  y E R can be wr i t ten  

Therefore, by Theorem 4.1, F i s  b i j e c t i v e  

-1 

n For continuous Mlfunctions F:R -+ Rn, Rheinboldt [1969b] has proved 

two s u r j e c t i v i t y  r e su l t s  which are based on Theorem 4.3; i n  other  words, 

the assumptions placed upon F 

For later reference w e  quote here without proof one of these r e su l t s ,  and 

more spec i f i ca l ly  the  one which represents  a continuation of Theorem 3.5. 

are s u f f i c i e n t  t o  prove the order coercivi ty .  

n Theorem 4.6. L e t  F:Rn -+ R be continuous and off-diagonally an t i tone ,  and 

suppose t h a t  f o r  some continuous, s t r i c t l y  isotone,  su r j ec t ive  functions 

1 n h . R ~  -+ R , j = 1, ... ,n,  the  mapping P:Rn -+ R with components piCtl = 

f ,  (h (x +t) , . . . ,hn (xn+t) ) , i = 1,. . . ,n ,  i s  isotone f o r  any fixed x E R . 
A s s u m e  fu r the r  t h a t  f o r  every node i of QF there is  a path (3.1) t o  

some node 

j = 0, ..., m ,  as w e l l  as t h e  component p are s t r i c t l y  isotone and sur jec t ive .  

Then F i s  a su r j ec t ive  M-function. 

j '  
n 

1 1 1  

R such t h a t ,  f o r  any x E Rn, the  l i n k  functions $i,i , 
I j+l  

R 

c 
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A s  a simple appl icat ion t o  d i f f e ren t i ab le  mappings, w e  present  the  

following corol lary:  

Theorem 4.7. L e t  F:Rn -+ Rn be off-diagonally an t i tone  and F-differentiable,  

and suppose t h a t  F '  (x)u 2 v 2 0 f o r  a l l  x E R" and some fixed u > 0 ,  v 2 0. 

A s s u m e  fu r the r  t h a t  f o r  any node i of QF there  is  a path C3.1). t o  some 

node R such t h a t  vR > 0 and 

(4.7) 

with constant ao, ..., a . Then F is a surjective M-function. m 

With h . ( t )  = t / u j ,  j = I, ..., n,  t h i s  theorem reduces immediately t o  the  
7 

previous one. 

A s  mentioned ear:ier, Theorem 3.7 provides an easy means of ver i fying 

t h a t  the d i sc re t e  analog of (3.2)--as considered i n  Section 3--is a su r j ec t ive  

M- f unction. 

Clear ly ,  there  are various o ther  co ro l l a r i e s  of Theorem 4.6 along the 

l i n e s  of the  previous r e s u l t .  Rather than t o  d e t a i l  these p o s s i b i l i t i e s ,  we 

end this sec t ion  with a somewhat d i f f e r e n t  observation. The  discussion i n  

t h i s  sec t ion  w a s  based on the norm-coerciveness theorem 4.1. A s  mentioned, 

Rheinboldt [1969a] obtained t h i s  theorem as a spec ia l  case of a more general 

continuation theory; another spec ia l  case of t h i s  theory is  the  well-known 

Hadamard theorem which states t h a t  a continuously F-different iable  mapping 

F:R + R 

x E Rn. 

n n is  su r j ec t ive  i f  F'  (x) i s  nonsingular and (IF' (x1-l d Y f o r  all.  

The r a the r  simple and d i r e c t  proof of the next theorem s h o w s  t h a t  

\ 

also the Hadamard theorem can be used t o  obtain s u r j e c t i v i t y  r e s u l t s  of the 

type considered here. 
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n Theorem 4.8. 

F-different iable .  Suppose fu r the r  t h a t  f o r  any x E R there  is  a vector 

u(x)  > 0 such t h a t  ucx) 6 u and F ' (x )u (x )  5 v > 0 w i t h  f ixed u > 0 ,  v > 0. 

L e t  F:Rn -t R be off-diagonally an t i tone  and continuously 

n 

Then F i s  a su r j ec t ive  M-function. 

proof: By the  ea r l i e r - c i t ed  character izat ion r e s u l t  f o r  M-matrices, F ' (x)  

i s  an M-matrix f o r  any x E R", and hence Theorem 3.6 ensures t h a t  

an M-function. 

E'' (x1-l = (b.. ( x ) ) ,  then 

F 

v 6 u. L e t  

is 

-1 Moreover, F '  (x)" >, 0 implies that 0 < F' (x) 

17 
n 
1 b . .  (x)v .  6 ui, i , k  = l , . . . , n ,  
j=1 

0 s bik(x)vk s 
1 3  3 

and v > 0 shows t h a t  k 

and, therefore ,  t h a t  the Hadamard theorem applies.  

5. Boundary Value Problems 

For a mapping F:Rn -t R 
n representing an equilibrium flow on a given 

network, t he  following problem i s  basic: A state vector x is t o  be 

determined which satisfies ce r t a in  specif ied conditions a t  the boundary 

nodes of t he  network and f o r  which the  e f f lux  from a l l  o ther  nodes equals 

a prescribed value. In  l i n e  with Birkhoff and Kellogg 119661, we consider 

here the case when the  state a t  the  boundary nodes i s  a given function of 

the e f f lux  from t h a t  node. The system of equations t o  be solved has then 

the form 
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I 

where N c N i s  the  se t  of boundary nodes. It is  no r e s t r i c t i o n  t o  assume 

always t h a t  N 

b 

= { l ,  ..., m}, 1 C m C n. b 

Any system of the form (5.1) is  a (spec i f ic )  boundary value problem 

fo r  F with respec t  t o  the boundary set Nb. W e  s h a l l  combine the  given 

functions h 

denote (5.1) by {H,z) where z E Rn. 

m i n t o  a mapping H:R1 -f R with components hl, . . . ,hm, and i 

Correspondingly, x = s o l  {H,z) designates 

any so lu t ion  of (5 .1) .  

The simplest  type of boundary value problem is  obtained when H E 0 ,  

t h a t  is ,  when the  boundary conditions reduce t o  x = z i E Nb; t h i s  w i l l  i i' 

be ca l l ed  the Dir ich le t  boundary value problem. In  this case, t h e  system 

(5.1) i s  equivalent with 

m,xm+l,...,x ) = z i = m + l , .  . . ,n,  if fi(Z1,. . . , z  n 

and hence w e  are again led  t o  consider the  proper t ies  of the subfunctions of 

F. 

In  many instances it i s  of i n t e r e s t  t o  provide r e s u l t s  f o r  a l l  boundary 

value problems {H,z) obtained by l e t t i n g  z E Rn be any vector and 

t i o n  from a given c l a s s  of mappings. For abbreviation, we denote the 

co l lec t ion  of a l l  problems {H,z} of t h i s  type by B @ , N b , H ) ,  o r  BCkl l  f o r  

H any func- 

shor t ,  i f  F and Nb are fixed. The two basic  problems connected w i t h  

such a class B(H) 

the  existence and uniqueness of solut ions f o r  any {H,z} E BCH1.  

a r e ,  of course, as i n  the case of d i f f e r e n t i a l  equations, 
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\ 

In view of the  above indicated connection between the Dir ich le t  pro- 

blems and the  subfunctions of the mapping F ,  the following r e s u l t  is  a 

d i r e c t  consequence of Theorem 3.4: 

Theorem 5.1. 

any Di r i ch le t  boundary value problem {O,z), z E R of F i s  unique provided 

L e t  F:Rn -t Rn be a P-, o r  M-function. Then the so lu t ion  of 

n 

it ex i s t s .  

n For continuous, su r j ec t ive  M-functions F:R += Rn, Rheinboldt [1969b] 

has shown t h a t  a l s o  any subfunction is  again a su r j ec t ive  M-function. 

Thus, i n  t h a t  case any Dir ich le t  problem of F always has a unique solu- 

t ion .  

M-functions i n  terms of the  convergence of the Jacobi process. W e  g ive here 

a simple, d i r e c t  proof based on the order  coercivf ty  theorem 4.3 and on the 

f a c t  that the subfunctZons of an M-function are again M-functions. 

The proof of t h i s  r e s u l t  w a s  based on a character izat ion of su r j ec t ive  

Theorem 5.2. 

any subfunction of F i s  again a su r j ec t ive  M-function. 

L e t  F:Rn -f Rn be a continuous sur jec t ive  M-function. Then a l s o  

Proof: W e  prove the r e s u l t  f o r  the  subfunction 

G : R ~ - '  -t R~-' ,  gi(xl , .  . . ,x = f .  (xl,. . ,xn-l,cn), i=l,. . . ,n-l; n-1 1 

the  general  case then follows by repeated appl icat ion of t h i s  r e s u l t  and by 

appropriate permutations of the  var iab les  and components. Because of 

Theorems 3.4 and 4.3 w e  need t o  show only t h a t  G i s  order-coercive. L e t  

gk = (xl,. . . ,x be any monotonically increasing sequence such t h a t  ) T  E Rn" k k 
n-1 

k k 
{GX 1 is  bounded. I f ,  say,  bi 3 gLCS 2 ,  i = 1 ,..., n-1, then 
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-1 k and hence it follows, with v = F (b l , . . . ,b  ) ,  t h a t  V .  3 x i = 1, ... ,n-1, n 1 i' 

k = O,l, ... . 
i f  {zk} is  monotonically decreasing. This shows t h a t  G i s  order  coercive 

Therefore, {gk} i s  bounded, and the  same r e s u l t  can be obtained 

and thus su r j ec t ive .  

It may be in t e re s t ing  t o  note t h a t  the subfunctions of su r j ec t ive ,  

inverse isotone mappings need ne i ther  be inverse isotone nor sur jec t ive .  In  

f a c t ,  it i s  eas i ly  v e r i f i e d  t h a t  

3 F:R -f R 3 ,  Fx = [: I :: + x;) 

3 
- x  

X 1 

1 1  
i s  inverse isotone and su r j ec t ive ,  while the subfunction G1:R -f R , 

i s  not inverse isotone and the subfunction gl(xl) = -x 1 

2 2 
2 2 G :R + R ,  G x =  

is  not su r j ec t ive .  

I n  the case of e l l i p t i c  p a r t i a l  d i f f e r e n t i a l  equations, the v a l i d i t y  1 

of a maximum pr inc ip le  i s  an important t oo l  i n  the study of the correspondihg 

boundary value problems. In  l i n e  with Rheinboldt 11969bJ--where a somewhat 

d i f f e r e n t  terminology w a s  used--we def ine  a maximum p r inc ip l e  f o r  network 

boundary value problems as follows: 
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Definit ion 5 . 3 .  Consider a c l a s s  B(F,Nb,H) of boundary value problems 

n f o r  a mapping F:Rn +- R with respect  t o  some set of boundary nodes N c b 
i i  

The c l a s s  

with H (t) 6 H ( t) ,  t E R , and z 

x = s o l  {H , z  1 ,  i = 1 , 2 .  

33 (w ) admits the maximum pr inc ip l e  i f  f o r  any {H ,z )EB (q) , 
1 2 1 1 1 6 z2, it follows t h a t  x $ x2 f o r  any 

i i i  

N. 

i = 1 , 2 ,  

For continuous, off-diagonally ant i tone F and the class = A 
of a l l  continuous, an t i tone  H:R1 +- Rm, Rheinboldt [1969bl proved a theorem 

ensuring the  v a l i d i t y  of the  maximum pr inc ip le .  This r e s u l t  was based on 

the observation t h a t  B (F ,Nb,A 1 admits the  maximum pr inc ip le  i f  and only 

i f ,  f o r  any H E A  the mapping 

i = m + l  ,..., n, 

i s  inverse isotone. 

In  the  d i f f e ren t i ab le  case there  i s  a simpler version of this r e s u l t  

f o r  which a proof can be obtained d i r e c t l y  from Theorem 4.7. W e  denote 

by A* t he  c l a s s  of a l l  F-different iable ,  ant i tone mappings H:R -+ R . 1 m  

Theorem 5.4. 

and suppose t h a t  F ' ( x ) u  2 v 2 0 f o r  any x E R and f ixed u > 0,  v 2 0. 

Assume fu r the r  t h a t  f o r  any i ,E? N 

from i t o  a boundary node R f o r  which (4.7) holds. Then every boundary 

value problem {H,z} E B(F,Nb,  A*) has a unique so lu t ion  and the c l a s s  

admits the  maximum pr inc ip le .  

L e t  F:Rn -f Rn be off-diagonally ant i tone and F-differentiable 

n 

= {I, ..., m} there e x i s t s  a path (3.1) b 

B ( A * )  
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To apply Theorem 4 . 7  w e  need t o  note only t h a t  f o r  any H E A * the  

function FH 

and t h a t  (F ) (x)u 2 0 2 0 

i g! Nb. 

of (5.3) i s  off  -diagonally an t i tone  and F-dif f e ren t i ab le ,  

for .  H I  with G = u > 0 f o r  i E Nb and Gi = v i i i 

6. I t e r a t i v e  Processes 

This sec t ion  is not  intended t o  give a survey about the i t e r a t i v e  

solut ion of the equation Fx = z when F belongs t o  any one of the function 

classes discussed here; There are many relevant  r e s u l t s  i n  the  l i t e ra ture ,  

and such a survey would, by necessi ty ,  be r a the r  extensive (see, e.g., 

Ortega and Rheinboldt [1970bl). 

convergence theorems, the l ist  of resul ts  s t i l l  remains surpr i s lng ly  lengthy. 

For the  Jacobi- o r  Gauss-Seidel processes it would include a well-known 

Even i f  w e  res t r ic t  ourselves t o  global  

theorem of Schechter [1962], which i n  our terminology concerns a special  

type of P-function, new r e s u l t s  of Mor6 [19701 f o r  diagonally dominant 

functions,  and a l so  the  r e s u l t  of Rheinboldt [1969b] f o r  su r j ec t ive  M- 

functions,  c i t e d  i n  the  introduction. In  addi t ion,  w e  would have t o  mention 

the global convergence theorem of Greenspan and Parter [1965] f o r  the Newton- 

one-step Gauss-Seidel process,  which appl ies  t o  a simple type of M-function, 

and a l so  the  Newton-convergence theorem of Baluev [1952] which, a s  we s h a l l  

see, assumes the  inverse i so ton ic i ty  of F. 

Instead of going i n t o  fu r the r  d e t a i l s  about these and other r e l a t ed  

r e su l t s ,  w e  s h a l l  consider here a pa r t i cu la r  c l a s s  of impl ic i t  i t e r a t i v e  

processes of the form 
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G(xk+l,xk) = z ,  k = 0,1, ..., \ 

which represents  a nonlinear general izat ion of t he  family of l i n e a r  methods 

obtained from regular  s p l i t t i n g s .  

For the i t e r a t i v e  so lu t ion  of a l i nea r  system Ax = z ,  Varga [19621 

introduced a regular s p l i t t i n g  of the  matrix 

i n  which B is nonsingular and B 2 0 as w e l l  as C 2 0. H e  then showed 

that f o r  such s p l i t t i n g s  the  i t e r a t i v e  process xk+’ = B 

converges (for any xo E R ) t o  the so lu t ion  of Ax = z i f  A 

i n  pa r t i cu la r ,  the well-known r e s u l t  about the convergence of the Jacobi and 

the Gauss-Seidel process when A is  an M-matrix. 

A as a decomposition A = B - C 
-1 

-1 k -1 Cx + B z ,  k = 0,1,. . . , 
n -1 

3 0. T h i s  covers, 

The mentioned s imi l a r i t y  between t h e  behavior of the M-matrices and 

M-functions suggests t he  idea of generalizing these regular  s p l i t t i n g s  t o  

nonlinear mappings. 

t h i s  general izat ion as  follows: 

I? d i r e c t  analogy t o  the  l i n e a r  de f in i t i on  w e  introduce 

n Defini t ion 6.1. A mapping G:D x D c Rn x Rn -f R i s  a regular  i t e r a t i o n  

function f o r  F : D c  Rn -f R on the  subset  D of D i f  

0 0  
n 

0 

0’ (6.2a) G(x,x) = Fx, f o r  any x E D 

0’ G(*,x) :D -t Rn is inverse isotone,  f o r  any f iked x E D 0 (6.2b) 

( 6 . 2 ~ )  G(y,*):DO -+ Rn is an t i tone ,  f o r  any f ixed y E Do. 

Note t h a t  i n  the l inea r  case t h i s  de f in i t i on  reduces exactly t o  t h a t  

of a regular s p l i t t i n g .  

necessary t o  add some assumption about the so lvab i l i t y  of the equation 

Note a l so  t h a t  i n  the  nonlinear case it is evidently 
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G(y,x) = z ,  f o r  given x E D before w e  can hope t o  e s t ab l i sh  general  con- 

vergence r e s u l t s  about the ( implici t )  i t e r a t i v e  process C6.11. 

\ 

0' 

In the  remainder of t h i s  sec t ion  w e  s h a l l  denote order i n t e rva l s  

n k i n  Rn by (u,v) = {x E R + x*, k -+ ml as 

k k+l k an abbreviation f o r  x s x , k = 0 , l  lim x = x*, and, s imi la r ly ,  

I u i x d v ) ,  and we  w r i t e  x 

k 
k- k k+l 

2 x xk J. x*, k -+ m, f o r  x I k = 0,1, ..., l i m  x = x*. Moreover, w e  w i l l  
k-+m 

use the following well-known r e s u l t  of Kantorovich [1939]: 

n n Lemma 6.2. 

t h a t  x i Hxo and y >, Hy . Then the  sequences xk+' = rn , y - HY , 
L e t  H:(xo,yo) C R -+ R be continuous and isotone, and assume 

k k k+l  - 0 0 0 

- -  _. _ -  k 0 
- k =-O,l, ..., s a t i s f y  xk + x*, k -+ m, and y J. Y * ~  k - +  m1 where x 6 X* = .  

0 Hx* < y* = Hy* 6 y . 

The next theorem extends t o  processes of the form C6.1) a corresponding 

monotone convergence r e s u l t  f o r  Jacobi and Gauss-Seidel processes proved by 

Rheinboldt [1969bl . 

Theorem 6.3. Given 

xolyo E D such t h a t  
.. 

F:D C Rn -+ Rn, suppose that  f o r  some z E Rn there  are 

x 0 0  c y , J = (x 0 0  ly  ) C  D and Fxo s z d Fyo. L e t  

G:J x J -+ R" be a continuous, regular  ilieqa$ion function f o r  F on J 

with the property t h a t  z E G(J;x) f o r  any fixed x E J. Then the sequences 

k k 0 0 {y ) and {x ) spec i f ied  by (6.1) and s t a r t i n g  from y and x I respect ively,  

are well-defined and s a t i s f y  xk + x*, k -+ m, y 

xo 5 x* s y* d yo and x*,y* a r e  both so lu t ions  of Fx = z .  

J. Y * ~  k -+ m, where 
k 

Proof: By assumption G(*,x)  = z has a so lu t ion  y E J and, because of C6.2b), 
I- 
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t h i s  so lu t ion  is  unique. Hence the mapping H : J  -+ J sa t i s fy ing  G & , ~ L =  \ 

i s  well-defined and c l ea r ly  continuous. Moreover, by C6.2~) it follows 

from xo e x c y c yo that 

and hence, by (6.2b1, that  Hy L H ~ .  Therefore, H is  isotone on J. 

O,x0) implies t h a t  Final ly ,  again by (6.2b),  G(x ,x ) = Fxo 6 z = G ( H x  

x 

t h a t  y 2 Hy . 
Lemma 6.2, and x* = Hx* and y* = Hy* are equivalent with Fx* = G ( x * , x * )  = z 

and Fy* = G(y*,y*) = 2.- 

0 0  

0 0 0 0  0 0  e H x  , and, s imi la r ly ,  we obtain from G ( y  ,y ) = E!yo 2 z = G(Hy ,y ) 

0 0 The convergence statement is now a d i r e c t  consequence of 

As a corol lary w e  obtain the  following global  convergence r e su l t .  

n n Theorem 6.4. L e t  F:R ,-+ R be continuous, inverse isotone, and sur jec t ive .  

Suppose, fu r the r ,  t h a t  G:Rn x Rn -+ Rn i s  a regular i t e r a t i o n  function f o r  

F on Rn with the  property t h a t  G ( *  ,XI :Rn + R is  sur jec t ive  f o r  any 

f ixed x E R . and any i n i t i a l  point  xo E Rn, t he  

process C6.1) converges t o  the  unique so lu t ion  x* E Rn of Fx = z. 

n 

n n Then, f o r  any z E R 

Proof: Note f i r s t  t h a t  (6.2b) and ( 6 . 2 ~ )  together with the s u r j e c t i v i t y  of 

G(* ,x)  imply the  existence of a continuous, isotone mapping H:R -+ R f o r  

which G(Hx,x) = z f o r  a l l  x E Rn. t h e  sequence 

{x } c Rn given by (6.1) i s  uniquely defined by xk+' = Hx , k = O , l ,  . . . . 

n n 

n Moreover, f o r  any xo E R 

k k 

L e t  a ,b  E Rn be the  vectors  w i t h  the  components 
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0 -1 -1 0 0 and set  u = F a, vo = F b. Then Fu 6 z 6 Fvo a s  w e l l  as Fuo x* 6 Fv , 

and it follows from the  inverse i so ton ic i ty  of F t h a t  u 6 x* 6 v , a s  

0 0 0  k k k well as u c x e v . Consider now t h e  sequences {u }, {x }, {v } given by 

(6.1) and s t a r t i n g  from u , x , and v , respect ively.  Then u = Hu , 

0 0 

0 0  0 k+l  k 

k 
X k+l = f-& , v k+l = Hv , k = 0,1, ..., and, because of the i so ton ic i ty  of H ,  

6 v , k = 0,1,. . . . 0 0  k k k  w e  obtain from u 

Moreover, from Theorem 6.3 it follows t h a t  uk 1. u*, k -f m and vk J. v*, 

k -f m where u S u* 6 v* v 

then implies t h a t  u* = v* = x* and hence necessar i ly  t h a t ,  l i m  x 

6 x 6 vo, by induction, t h a t  u c x 

and Fu* = 2, Fv* = 2. The i n j e c t i v i t y  of F 
0 0 

k 
= x*. 

k-m 
This r e s u l t  covers as a spec ia l  case the  global  convergence of the 

Jacobi and the  Gauss-Seidel process f o r  continuous su r j ec t ive  M-functions 

mentioned i n  the introduction. Instead of going i n t o  d e t a i l s  of t h a t  case w e  

extend it immediately t o  the  corresponding block processes. 

With n + n2 + ... + n = n, n 2 I, p b 1, consider Rn as the  
n j 

n i ' n  n ' n  
product-space R x R X . . . X R and l e t  P .  :R -f R , i = 1,. . . ,PI 

1 

denote the  corresponding na tura l  project ions.  

t ioned i n  t h e  form x = (x l ,  ..., 2) where x 

s imi la r ly ,  we def ine t h e  block-components F :Rn -f R 

Then any x E Rn may be p a r t i -  

i 
= P.x, i = 1 ,..-, p,  and, 

of any mapping 

1 n i i 

For the  solut ion of the equation Fx = z, the block-Gauss-Seidel proces.s, 

with respect  t o  the  p a r t i c u l a r  p a r t i t i o n ,  has now t h e  form: 
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n i i f Determine a solution x E R of 

\ 

i-1 k+l i i+l k n k  i Fi((.xl)k+l ,..., h I x , (x 1 ,..., (x ) ) = z i (6.3) 

i i = l,...tp, k = O,l,. .. . ( and set (x ) = x I 
i k+l 

Analogously, the block Jacobi process can be defined, and the form of 

the relaxation-versions of both processes should be self-evident. For 

reasons of space, we restrict ourselves here to C6.3), especially since 

in the mentioned other cases the discussion remains essentially the same. 

Observe now that with 

the process (6.3) assumes the general form (6.1). For M-functions F, the 

following result then insures the applicability of Theorems 6.3 and 6.4 

to the block Gauss-Seidel process (6.3). 

n Theorem 6.5. 

defined by (6.4) is a regular iteration function for F on Rn. If, in 

addition, F is continuous and surjective, then G(*,x):R + R is surjec- 

tive for any fixed x E R . 

Let F:Rn + Rn be an M-function; then the mapping G:Rn x Rn + R 

n n 

n 

Proof: The conditions (6.2a) and (6.2~) are evidently satisfied for G, 

and hence, in order to complete the proof of the first statement, 2t remaids 

to show only that G 

n G(v,x) 2 G(u,x) for some x,u,v E R . By Theorem 3.4, the subfunction 

n n ,x) :Rn -f R is inverse isotone for any x E R . Let 

n n 1 2  F ( 0  ,x , . . . ,xn) :R + R of F is again an M-function, and, hence, 
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1 1 

P G(v,x) 2 PIG(u,x) implies t h a t  v 

t h a t  v 2 u f o r  i = 1, ..., k-1 and s o m e  k w i t h  2 < k 6 n. Then the of f -  

diagonal a n t i t o n i c i t y  of F ensures t h a t  

2 u . To proceed by induction, suppose \ 

1 
i i 

Fk(ul ,..., u ~ - ~ , v ~ , x ~ + ~ , . . . , x  n 2 F k (v '1 , . . . /v  k ,x k+l ,. . . ,x n 1 

n n k 1  k-1 k+l  n Since F (u , . . . ,U , ,X , . . . ,x ) :R + R i s  again an M-function, t h i s  

shows t h a t  a l so  vk 2 uk, and hence al together ,  t h a t  v >c u. 

For the  proof of the  second p a r t ,  assume that F is  a continuous, 

su r j ec t ive  M-function. Then, by Theorem 5.2, a l s o  any subfunction of F 

has the same propert ies .  Hence, f o r  given x , z  E R , t he  equation n 

1 ' "1 has a unique solut ion y . E R . If f o r  some k ,  with 2 s k s n-1, vectors 
n i i y E R , i = l,.. .,k-1, have already been found with t h e  property t h a t  

i 1  i i+l n i 
(6.5) PiG(y,x) = F (y ,..., y I x ,..., x 1 = z , i = 1 ,..., k-1, 

k 1  k -1 
then the  s u r j e c t i v i t y  of F (y , . e e ,y 
of a yk E R 

unique so lu t ion  y E R and the  proof is  complete. 

,xk", . .. . ,xn2 ensures the existence 

"k f o r  which (6.5) holds with i = k. Hence, GCy,xS = z has a 

n 

Theorems 6.4 and 6.5 together state the global  convergence of the  

block Gauss-Seidel process (6.3) f o r  continuous, su r j ec t ive  M-functions. 

As mentioned above, t h i s  r e su l t  a l so  carries over t o  the b lockJacob i  process 

and the  underrelaxed versions of both these block methods, and tlie proofs f o r  



these cases are es sen t i a l ly  the  same as t h a t  f o r  the Gauss-Seidel method. \ 

These r e s u l t s  raise the  question whether some of  the  o ther  global 

convergence theorems mentioned i n  the beginning of this sect ion might a l s o  

be subsumed under Theorem 6.4. T h i s  is  not t he  case due t o  the  f a i r l y  

r e s t r i c t i v e  nature of t he  regular i t e r a t i o n  functions.  

be many possible modifications of Defini t ion 6.1, bu t  it is doubtful whether 

There appear t o  

any one of them ac tua l ly  covers a broader class of methods and not  j u s t  again 

only a few spec i f i c  convergence theorems. W e  end t h i s  sec t ion  with some 

r e s u l t s  about one such generalized form of the regular i t e r a t i o n  functions.  

Since t h i s  discussion i s  pr imari ly  intended t o  be an example, no attempt 

w a s  made t o  phrase these r e s u l t s  i n  t h e i r  most general  form. 

n n n n n Theorem 6.6. L e t  F:R + R be inverse isotone and G:R x R + R a continuous 

mapping with the  proper t ies  

n 
(6.6a) G(x,x) = Fx f o r  any x E R 

n (6.6b) G ( 0 , x ) : R  + Rn i s  inverse isotone and su r j ec t ive  f o r  any x E Rn 

0 0  n 0 0 k I f  f o r  some x ,y , z E R w e  have Fx 6 z 6 Fy , then the sequence {y } 

given by (6.11 and s t a r t i n g  f r o m  yo 

x* E (xo,yo} i s  the  (unique) so lu t ion  of Fx = z i n  Rn. 

s a t i s f i e s  yk J. x*, k -+ 00, where 

Proof: By (6.6b) t h e  mapping H:Rn + Rn s a t i s fy ing  G(Hx,x) = z i s  w e l l -  

defined and cer ta in ly  continuous. Then {y 1 is uniquely spec i f ied  by 

y = Hy , k = O,l, ... . Moreover, from 6 . 6 ~ 1  it follows t h a t  when 

k 

k+l 'k 
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G(x,x) = Fx 2 z = G(Hx,x), then a l so  FHx = G(Hx,Hx) 2 G(Hx,x) = z .  Thus 

w e  obtain from Fy 2 z ,  by induction, t h a t  Fy 2 z 2 Fx , k = O,l, ... . 
Now the  inverse i so ton ic i ty  of F implies t h a t  yk 2 xo, f o r  a l l  k 2 0,  

which, i n  tu rn ,  ensures the  existence of l i m  yk = x* E (xo,yo}. BY the 

cont inui ty  of G w e  then have Fx* = G(x*,x*) = z and, c lear ly ,  x* i s  

0 k 0 

k- 

unique. 

k Note that the analogous r e s u l t  holds f o r  the lower sequence {x } 

s t a r t i n g  from xo provided t h a t  a l l  inequal i t ies  i n  ( 6 . 6 ~ )  are reversed. 

Any regular  i t e r a t i o n  function s a t i s f i e s  ( 6 . 6 ~ )  as w e l l  as the corresponding 

reversed implication. In  f a c t ,  i f  G(x,x) 2 G(y,x), x,y E R , then w e  obtain 

from C6.2b) that x 8 y and hence from ( 6 . 2 ~ )  t h a t  G(y,yI 2 GCy,x). The 

n 

analogous argument appl ies  when the inequal i t ies  are reversed. 

A s  an appl icat ion of t h i s  r e s u l t  w e  give the following theorem, proved 

i n  more general i ty  by Ortega and Rheinboldt [19671. 

Theorem 6.7. 

inverse isotone, and assume t h a t  F ' k )  = B(x) - C(x) i s ,  f o r  any x E R , 

a regular s p l i t t i n g  of F'  (x) with continuous B:Rn -+ L(Rn) .  I f  f o r  given 

x ,y , z E R 

L e t  F:Rn -+ Rn be continuously d i f f e ren t i ab le ,  convex, and 

n 

0 0  n 0 0 w e  have Fxo C z C Fyo (and thus x c y 1 ,  then the sequence 

(6.7) 
y k+l = y k - B(yk)-l(Fy k - z ) ,  k = O,l, ... 

s a t i s f i e s  yk J. x*, k -+ 03, where x* E (.',yo} i s  the  (unique)- solut ion of 

FX = z i n  R". 

I n  order to  use Theorem 6.6,  w e  note f i r s t  that f o r  
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the  process (6.7) is  equivalent w i t h  (6.11. Clearly G s a t i s f i e s  C6.6a) 
\ 

and (6.6b); f o r  the proof of ( 6 . 6 ~ )  l e t  G(x,x) 2 G(y,x) = W f o r  some 

X I Y  E Rn. 

B(x) 

This inequal i ty  i s  equivalent with 0 2 B k ) .  (y-x) , and hence, 

-1 2 0 implies t h a t  x 2 y. With the  help of the convexity inequal i ty  

w e  f ind  then that indeed 

Note t h a t  G i s ,  i n  general ,  not a regular  i t e r a t i o n  function. 

Ortega and Rheinboldt 119671 have shown t h a t  t h i s  r e s u l t  contains as  

a coro l la ry  the global  convergence theorem f o r  Newton's method of Baluev 

[1952] mentioned i n  the  beginning of t h i s  sect ion.  It may be in t e re s t ing  

t h a t  Theorem 3.7 allows us  t o  state this theorem i n  a s l i g h t l y  modified, and 

ye t  equivalent,  form: 

n n Theorem 6.8. L e t  F:R -+ R be continuously d i f f e ren t i ab le ,  convex, and 

inverse isotone. x*, then, f o r  any xo E Rn, the 

Newton iterates x = x - F '  (xk) (Fx -zl , k = 0,1, .  . . a r e  well-defined 

If Fx = z has a so lu t ion  

k+l k k 

k k + l  k and s a t i s f y  x 2 x , k = 1 , 2 ,  ..., and l i m  x = x*. 
k- 

-1 By Theorem 3.7, F '  (x) is always nonsingular and F '  (x) 2 0. Thus 

the mapping G:Rn x Rn +- R , G(y,x) = F'(x). Cy-x) + Fx c l e a r l y  s a t i s f 3 e s  C6.6a). n 



- 40 - 

and (6.6b), w h i l e  ( 6 . 6 ~ )  is  simply (6.8). From (6.8) a l so  follows t h a t  

Fx 

order i n t e rva l  (x* ,xl). 

1 0 1 0  2 Fxo + F' Or ) (x -x ) = z, and hence, that Theorem 6.6 applies on the  
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